Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface

Int J Biol Sci. 2021 Apr 23;17(7):1769-1781. doi: 10.7150/ijbs.59025. eCollection 2021.

Abstract

The formation of biofilms on medical-context surfaces gives the EPS embedded bacterial community protection and additional advantages that planktonic cells would not have such as increased antibiotic resistance and horizontal gene transfer. Bacterial cells tend to attach to a conditioning layer after overcoming possible electrical barriers and go through two phases of attachments: reversible and irreversible. In the first, bacterial attachment to the surface is reversible and occurs quickly whilst the latter is permanent and takes place over a longer period of time. Upon reaching a certain density in the bacterial community, quorum sensing causes phenotypical changes leading to a loss in motility and the production of EPS. This position paper seeks to address the problem of bacterial adhesion and biofilm formation for the medical surfaces by comparing inhabiting physicochemical interactions and biological mechanisms. Several physiochemical methodologies (e.g. ultrasonication, alternating magnetic field and chemical surface coating) and utilizing biological mechanisms (e.g. quorum quenching and EPS degrading enzymes) were suggested. The possible strategical applications of each category were suggested and evaluated to a balanced position to possibly eliminate the adhesion and formation of biofilms on medical-context surfaces.

Keywords: Biofilms adhesion; Biological methods; Medical-context surface; Physicochemical methods; Resistance control..

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacteria / genetics
  • Bacteria / growth & development*
  • Bacterial Adhesion / genetics*
  • Bacterial Proteins / genetics*
  • Biofilms*
  • Humans
  • Quorum Sensing / genetics*

Substances

  • Bacterial Proteins