Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth

Fungal Genet Biol. 2021 Jul:152:103568. doi: 10.1016/j.fgb.2021.103568. Epub 2021 May 13.

Abstract

Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.

Keywords: Biosynthetic gene clusters; Candida albicans; Metarhizium; Metarhizium anisopliae; Polyketide; Secondary metabolites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antifungal Agents
  • Aspergillus nidulans / genetics
  • Biosynthetic Pathways / genetics*
  • Candida albicans / drug effects*
  • Candida albicans / growth & development*
  • Fungi / drug effects
  • Gene Expression Regulation, Fungal
  • Genome, Fungal / genetics
  • Larva / microbiology
  • Metarhizium / genetics*
  • Metarhizium / metabolism*
  • Microbial Interactions / physiology
  • Microbial Sensitivity Tests
  • Moths
  • Multigene Family
  • Polyketides / chemistry
  • Polyketides / isolation & purification
  • Polyketides / metabolism*
  • Polyketides / pharmacology*
  • Secondary Metabolism / genetics

Substances

  • Antifungal Agents
  • Polyketides