Absolute phase marking technology and fiber-optic remote coherent phase transmission

Opt Express. 2021 Apr 26;29(9):14041-14057. doi: 10.1364/OE.419695.

Abstract

Fiber-optic time and frequency synchronization technology demonstrates ultra-high synchronization performance and has been gradually applied in various fields. Based on frequency synchronization, this study addressed the problems of period ambiguity and initial phase uncertainty of the phase signal to realize the coherent transmission of the phase. An absolute phase marking technology was developed based on high-speed digital logic with zero-crossing detection and an optimized control strategy. It can realize picosecond-level absolute phase marking and provide a picosecond-level ultra-low peak-to-peak jitter pulse marking signal to eliminate phase period ambiguity and determine initial phase and transmission delay. Thus, by combining the high-precision phase measurement capability of the synchronized frequency signal and long-distance ambiguity elimination capability of the pulse-per-second signal, a high-precision remote coherent phase transmission over an optical fiber is realized. After frequency synchronization, the peak-to-peak jitter between the local and remote phase-marking signals can be only 3.3 ps within 10,000 s measurement time. The uncertainty of the coherent phase transmission is 2.577 ps. This technology can significantly improve the phase coherence of fiber-optic time and frequency transmission and provide a new approach to achieve peak-to-peak picosecond-level reference phase marking and high-precision fiber-optic remote coherent phase transmission. This demonstrates broad application prospects in coherence fields such as radar networking.