Climate change impact on EU rivers' dilution capacity and ecological status

Water Res. 2021 Jul 1:199:117166. doi: 10.1016/j.watres.2021.117166. Epub 2021 Apr 22.

Abstract

Impacts from urban wastewater treatment plants (WWTP) to receiving riverine surface water bodies (SWBs) depend on the load of contaminants discharged, as well as on their dilution capacity. Yet, climate change impacts on such dilution capacity and ultimately on the SWBs ecological status remain unclear. Here, we assess SWBs dilution capacity across the European continent to identify most vulnerable areas using information from centralized European databases. SWBs´ future dilution factor values are estimated based on representative concentration pathway scenarios impacts on rivers flow, and likely changes in European SWBs´ ecological status foretold. Results show that dilution factor in Europe increases by 5.4% in average. Yet, climate change effects are found to lead to a consistent dilution factor decrease for 11% of the 40074 European SWBs receiving WWTP discharge for the early century. This share reaches 17% for the midcentury period. We estimate that up to 42% of the SWBs receiving WWTP discharges and currently reaching a good ecological status show a 0.7 probability to have their ecological status downgraded due to climate change. Sites more vulnerable are located in the Mediterranean countries. Our findings highlight that climate change mitigation is essential for maintaining good ecological status in European SWBs.

MeSH terms

  • Climate Change
  • Environmental Monitoring
  • Europe
  • Rivers*
  • Water Purification*