Simultaneous determination of low molecule benzotriazoles and benzotriazole UV stabilizers in wastewater by ultrasound-assisted emulsification microextraction followed by GC-MS detection

Sci Rep. 2021 May 12;11(1):10098. doi: 10.1038/s41598-021-89529-1.

Abstract

A rapid, sensitive, economically and ecologically friendly method based on one-step ultrasound-assisted emulsification microextraction and in situ derivatization followed by gas chromatography-mass spectrometry for simultaneous determination of low molecular benzotriazoles and benzotriazole-based ultraviolet filters was developed. The optimized method allows quantification of benzotriazole, 4-methylbenzotriazole, 5-methylbenzotriazole; 5-chlorobenzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzortriazole and 2-(2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole in municipal and industrial (dairy) wastewater. The method was validated using real influent and effluent wastewater and samples at various stages of the purification process. Relative recoveries obtained using wastewater as sample matrix were between 77 and 137%, method limits of detection from 0.001 to 0.035 µg/L, method limits of quantification from 0.003 to 0.116 µg/L, the repeatability expressed by the coefficient of variation did not exceed 12%. The use of the method for the determination of tested compounds in municipal and industrial wastewater showed their presence in most of the tested samples, in concentrations from LoD to 6.110 µg/L. The conducted studies of samples from municipal wastewater treatment plant located in north-east Poland showed that the effectiveness of benzotriazole removal by this plant wasfrom 29 to 84%. The load of tested compounds released into the environment by this facility ranges from 2 to 269 mg/day/1000 inhabitants.

Publication types

  • Research Support, Non-U.S. Gov't