Graphene Oxide/Fe2O3 Nanocomposite as an Efficient Catalyst for Thermal Decomposition of Ammonium Perchlorate via the Vacuum-Freeze-Drying Method

Langmuir. 2021 May 25;37(20):6132-6138. doi: 10.1021/acs.langmuir.1c00108. Epub 2021 May 13.

Abstract

The combination of graphene oxide (GO) and iron oxide (Fe2O3) may induce property enforcement and application extension. Herein, GO/Fe2O3 nanocomposites were synthesized via the vacuum-freeze-drying method and used for the thermal decomposition of ammonium perchlorate (AP). A series of characterization techniques were applied to elucidate the as-obtained nanomaterial's physicochemical properties. These results show that the treated GO is consistent with the pristine GO after the freeze-drying treatment. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses show that iron oxide nanoparticles are anchored on and between the GO sheets. The catalytical effect investigation on AP with different Fe2O3: GO ratios indicates that the high-temperature decomposition temperature of AP could be decreased by a temperature as high as 77 °C compared to pure AP accompanied by 3 wt % GO/Fe2O3 nanocomposite which proves the high catalytic performance of the nanocomposites. The first-principles calculation was employed to elaborate the synergistic effect, and the findings demonstrate that the presence of graphene in the catalyst can enhance the catalytic effect via reducing the activation energy barrier by ∼17% in the reaction of AP thermal decomposition.