Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow

Langmuir. 2021 May 25;37(20):6278-6291. doi: 10.1021/acs.langmuir.1c00726. Epub 2021 May 12.

Abstract

The focus of this study is to investigate and compare the behavior of a droplet on superhydrophobic (SHS) and slippery lubricant impregnated (SLIPS) surfaces under the effect of air shear flow. In this regard, both experimental and numerical analyses have been conducted to compare their performance on droplet mobility under different air speeds. Two different lubricants have been utilized to scrutinize their effect on droplet movement. The numerical simulations have been performed based on the volume of fluid method coupled with the large eddy simulation turbulent model in conjunction with the dynamic contact angle method in addition to a model that can represent the effect of lubricants on slippery surfaces. The numerical simulations are compared with the experimental study in order to shed light on the underlying mechanisms. The results showed that under the same conditions, the critical velocity for droplet movement on the superhydrophobic surfaces is lower than that on the slippery lubricant impregnated surfaces due to the smaller droplet base diameter and the larger contact angle. The hydrodynamics of droplet mobility on superhydrophobic surfaces exhibits a rolling behavior while for the slippery lubricant impregnated surfaces a combination of rolling and sliding is observed. Beyond the critical airflow speed, a complete droplet shedding on all surfaces occurs. The wetting length and position of the droplet on superhydrophobic and slippery surfaces have been measured. On slippery surfaces, the speed of droplets is greatly affected by the lubricant properties while similar behavior in the wetting lengths is observed.