5' ALK Amplification in Neuroblastoma: A Case Report

Case Rep Oncol. 2021 Mar 23;14(1):585-591. doi: 10.1159/000512187. eCollection 2021 Jan-Apr.

Abstract

Neuroblastoma is the most common cancer in infants younger than 12 months of age, occurring with an incidence of 1 in 100,000 children. The clinical outcome of neuroblastoma ranges from spontaneous regression to treatment-resistant progression and/or metastasis, and accounts for 8-10% of childhood cancer deaths. Segmental chromosomal aberrations, as well as MYCN and ALK amplification, are among factors contributing to an unfavorable genomic profile and high-risk disease classification. Here, we describe a 5-year-old male who presented with a large right renal neuroblastoma tumor having lung and liver metastases. Fluorescence in situ hybridization analysis indicated the presence of >20 copies of the 5' region of the ALK gene in 26% of cells examined. Subsequent copy number assessment did not confirm ALK amplification, but revealed a gain of exons 2-5 of ALK, consistent with increased copy number for the 5' region of the ALK gene. Subsequent array analysis showed the presence of other unfavorable prognostic genomic features, including segmental gain of the 17q region and amplification of the long arm of chromosome 12 harboring CDK4 and MDM2, both reported to be poor prognostic indicators in patients with atypical clinical features in neuroblastoma. Taken together, this report illustrates the importance of careful interpretation of aberrant FISH findings and subsequent use of orthogonal methods to clarify the presence of genomic alterations to successfully determine potential treatment targets.

Keywords: ALK gene; FISH; Gene amplification; Microarray; Neuroblastoma.

Publication types

  • Case Reports