A novel simple and sensitive approach for determination of 1,1-dimethylhydrazine in aqueous samples by high performance liquid chromatography with ultraviolet and tandem mass spectrometric detection after derivatization with unsubstituted aromatic aldehydes

Chemosphere. 2021 Oct:280:130747. doi: 10.1016/j.chemosphere.2021.130747. Epub 2021 May 3.

Abstract

In this work, simple, rapid and highly sensitive method of hazardous chemical 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine, UDMH) determination based on pre-column derivatization with unsubstituted aromatic aldehydes and reversed-phase high performance liquid chromatography-ultraviolet-tandem mass spectrometry (RP HPLC-UV-MS/MS) has been developed. Along with benzaldehyde, commercially available aromatic aldehydes, namely: 2-naphthaldehyde, 2-pyridinecarboxaldehyde, and 2-quinolinecarboxaldehyde, were used as derivatizing reagents in the analysis of hydrazines for the first time. The reactions were studied in a wide pH range by varying reaction time and other conditions. A slightly alkaline pH 9 was shown to be optimal for the derivatization of UDMH by aromatic aldehydes. The quantitative yield of derivatization products under the established conditions was confirmed by HPLC analysis with amperometric detection. For all studied reagents, wide linear ranges of concentrations (0.01-1000 μg/L) in natural water samples were observed. The limits of detection for UDMH in natural water were in the 3.7-130 ng/L range. 2-Quinolinecarboxaldehyde was selected as the most appropriate reagent for HPLC-UV-MS/MS determination of UDMH. In case of using this reagent, the accuracy was in the range of 97-102%, and precision, expressed as RSD was less than 8%. The developed approach does not require laborious stages of pre-concentration and isolation of UDMH from natural water components.

Keywords: 1,1-Dimethylhydrazine (unsymmetrical dimethylhydrazine; Aqueous samples; Aromatic aldehydes; Derivatization; High performance liquid chromatography; Tandem mass spectrometric detection; UDMH).

MeSH terms

  • Aldehydes*
  • Chromatography, High Pressure Liquid
  • Dimethylhydrazines
  • Tandem Mass Spectrometry*
  • Water

Substances

  • Aldehydes
  • Dimethylhydrazines
  • Water
  • dimazine