Ag-exchanged mesoporous chromium terephthalate with sulfonate for removing radioactive methyl iodide at extremely low concentrations in humid environments

J Hazard Mater. 2021 Sep 5:417:125904. doi: 10.1016/j.jhazmat.2021.125904. Epub 2021 Apr 17.

Abstract

The development of efficient adsorbents to remove radioactive methyl iodide (CH3I) in humid environments is crucial for air purification after pollution by nuclear power plant waste. In this work, we successfully prepared a post-synthetic covalent modified MIL-101 with a sulfonate group followed by the ion-exchange of Ag (I), which is well characterized by diffuse reflectance FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and the hydrophobic index (HI). After modification of the MOFs, we applied functionalized MIL-101 obtained by either one-pot synthesis (MIL-101-SO3Ag) or a post-synthetic modification process (MIL-101-RSO3Ag, R = NH(CH2)3) to remove the CH3I at an extremely low concentration (0.31 ppm) in an environment with very high relative humidity (RH 95%). Enhanced hydrophobicity of the surface-modified MIL-101 was evaluated by examining the HI with the competitive adsorption of water and cyclohexane vapor, with a high surface area maintained, as confirmed by Ar physisorption. Interestingly, the post-synthetically modified MIL-101-RSO3Ag showed exceptional adsorption performance as determined by its decontamination factor (DF = 195,350) at 303 K and RH 95%. This performance was in comparison to Ag (I)-exchanged 13X zeolite and MIL-101-SO3Ag, which include much higher amounts of Ag. Furthermore, MIL-101-RSO3Ag retained ~94-100% of its fresh adsorbent performance during five cycle repetitions.

Keywords: Breakthrough experiment; Hydrophobicity; Metal-Organic Frameworks; Methyl iodide removal; Post-synthetic modification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromium*
  • Hydrocarbons, Iodinated
  • Phthalic Acids
  • Silver
  • Spectroscopy, Fourier Transform Infrared
  • Water Pollutants, Chemical* / analysis

Substances

  • Hydrocarbons, Iodinated
  • Phthalic Acids
  • Water Pollutants, Chemical
  • Chromium
  • Silver
  • terephthalic acid
  • methyl iodide