Improved Description and Efficient Implementation of Spin-Projected Perturbation Theory for Practical Applications

J Chem Theory Comput. 2021 Jun 8;17(6):3471-3482. doi: 10.1021/acs.jctc.1c00324. Epub 2021 May 10.

Abstract

In this study, we continue to develop the recently proposed second-order perturbation theory for the spin-projected Hartree-Fock method [Tsuchimochi, T.; Ten-no, S. L. J. Chem. Theory Comput. 2019, 15, 6688] in various aspects. A new, stable imaginary level-shift scheme is derived to obtain a well-conditioned equation, enabling a significantly faster convergence. To achieve a further speed-up, we propose a preconditioning scheme considering the pair character on a spin-projected basis. We also eliminate the computational memory bottleneck in solving the linear equation for large systems using a distributed memory parallel implementation. Finally, for the description of open-shell molecules, several modified zeroth-order Hamiltonians are introduced and tested using the Mn2O2(NHCHCO2)4 complex. These developments enable practical calculations of a second-order perturbation theory with improved accuracy at a reduced computational cost.