Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor

Sci Total Environ. 2021 Sep 10:786:147475. doi: 10.1016/j.scitotenv.2021.147475. Epub 2021 Apr 30.

Abstract

The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3-N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43--P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.

Keywords: Activated sludge; Algae; Electrochemical; Fouling; Membrane bioreactor; Wastewater.

MeSH terms

  • Bioreactors
  • Membranes, Artificial
  • Sewage*
  • Wastewater
  • Water Purification*

Substances

  • Membranes, Artificial
  • Sewage
  • Waste Water