Detection of chlorophyll fluorescence parameters of potato leaves based on continuous wavelet transform and spectral analysis

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Oct 5:259:119768. doi: 10.1016/j.saa.2021.119768. Epub 2021 Apr 2.

Abstract

The tuber development and nutrient transportation of potato crops are closely related to canopy photosynthesis dynamics. Chlorophyll fluorescence parameters of photosystem II, especially the maximum quantum yield of primary photochemistry (Fv/Fm), are intrinsic indicators for plant photosynthesis. Rapid detection of Fv/Fm of leaves by spectroscopy method instead of time-consuming pulse amplitude modulation technique could help to indicate potato development dynamics and guide field management. Accordingly, this study aims to extract fluorescence signals from hyperspectral reflectance to detect Fv/Fm. Hyperspectral imaging system and closed chlorophyll fluorescence imaging system were applied to collect the spectral data and values of Fv/Fm of 176 samples. The spectral data were decomposed by continuous wavelet transform (CWT) to obtain wavelet coefficients (WFs). Three mother wavelet functions including second derivative of Gaussian (gaus2), biorthogonal 3.3 (bior3.3) and reverse biorthogonal 3.3 (rbio3.3) were compared and the bior3.3 showed the best correlation with Fv/Fm. Two variable selection algorithms were used to select sensitive WFs of Fv/Fm including Monte Carlo uninformative variables elimination (MC-UVE) algorithm and random frog (RF) algorithm. Then the partial least squares (PLS) regression was used to establish detection models, which were labeled as bior3.3-MC-UVE-PLS and bior3.3-RF-PLS, respectively. The determination coefficients of prediction set of bior3.3-MC-UVE-PLS and bior3.3-RF-PLS were 0.8071 and 0.8218, respectively, and the root mean square errors of prediction set were 0.0181 and 0.0174, respectively. The bior3.3-RF-PLS had the best detection performance and the corresponding WFs were mainly distributed in the bands affected by fluorescence emission (650-800 nm), chlorophyll absorption and reflection. Overall, this study demonstrated the potential of CWT in fluorescence signals extraction and can serve as a guide in the quick detection of chlorophyll fluorescence parameters.

Keywords: Chlorophyll fluorescence; Continuous wavelet transform; Hyperspectral imaging; Potato leaf; Random frog algorithm.

MeSH terms

  • Chlorophyll
  • Fluorescence
  • Least-Squares Analysis
  • Plant Leaves
  • Solanum tuberosum*
  • Wavelet Analysis*

Substances

  • Chlorophyll