Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data

Health Inf Sci Syst. 2021 May 4;9(1):20. doi: 10.1007/s13755-021-00151-x. eCollection 2021 Dec.

Abstract

Introduction: Hepatocellular carcinoma is the prevalent primary liver cancer, a silent disease that killed 782,000 worldwide in 2018. Multimodal deep learning is the application of deep learning techniques, fusing more than one data modality as the model's input.

Purpose: A computer-aided diagnosis system for hepatocellular carcinoma developed with multimodal deep learning approaches could use multiple data modalities as recommended by clinical guidelines, and enhance the robustness and the value of the second-opinion given to physicians. This article describes the process of creation and evaluation of an algorithm for computer-aided diagnosis of hepatocellular carcinoma developed with multimodal deep learning techniques fusing preprocessed computed-tomography images with structured data from patient Electronic Health Records.

Results: The classification performance achieved by the proposed algorithm in the test dataset was: accuracy = 86.9%, precision = 89.6%, recall = 86.9% and F-Score = 86.7%. These classification performance metrics are closer to the state-of-the-art in this area and were achieved with data modalities which are cheaper than traditional Magnetic Resonance Imaging approaches, enabling the use of the proposed algorithm by low and mid-sized healthcare institutions.

Conclusion: The classification performance achieved with the multimodal deep learning algorithm is higher than human specialists diagnostic performance using only CT for diagnosis. Even though the results are promising, the multimodal deep learning architecture used for hepatocellular carcinoma prediction needs more training and test processes using different datasets before the use of the proposed algorithm by physicians in real healthcare routines. The additional training aims to confirm the classification performance achieved and enhance the model's robustness.

Keywords: Computer-aided diagnosis; Convolutional neural networks; Hepatocellular carcinoma; Multimodal deep learning.