Probing Surface-Bound Atoms with Quantum Nanophotonics

Phys Rev Lett. 2021 Apr 23;126(16):163601. doi: 10.1103/PhysRevLett.126.163601.

Abstract

Quantum control of atoms at ultrashort distances from surfaces would open a new paradigm in quantum optics and offer a novel tool for the investigation of near-surface physics. Here, we investigate the motional states of atoms that are bound weakly to the surface of a hot optical nanofiber. We theoretically demonstrate that with optimized mechanical properties of the nanofiber these states are quantized despite phonon-induced decoherence. We further show that it is possible to influence their properties with additional nanofiber-guided light fields and suggest heterodyne fluorescence spectroscopy to probe the spectrum of the quantized atomic motion. Extending the optical control of atoms to smaller atom-surface separations could create opportunities for quantum communication and instigate the convergence of surface physics, quantum optics, and the physics of cold atoms.