Phytoremediation of potentially toxic elements in a polluted industrial soil using Poinsettia

Physiol Mol Biol Plants. 2021 Apr;27(4):675-686. doi: 10.1007/s12298-021-00980-w. Epub 2021 Mar 27.

Abstract

Potentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey's test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.

Keywords: Ornamental plants; Phytoextraction; Phytoremediation; Poinsettia; Potentially toxic elements.