Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes

Exp Biol Med (Maywood). 2021 Nov;246(22):2358-2371. doi: 10.1177/15353702211010762. Epub 2021 May 6.

Abstract

The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.

Keywords: Nanoparticles; barrier; drug delivery; hitchhiking; lymph node; targeting.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Drug Delivery Systems / methods*
  • Humans
  • Injections, Intravenous
  • Lymph Nodes / drug effects*
  • Nanoparticles / administration & dosage*
  • Nanoparticles / therapeutic use