Sensitivity analysis of pinna morphology on head-related transfer functions simulated via a parametric pinna model

J Acoust Soc Am. 2021 Apr;149(4):2559. doi: 10.1121/10.0004128.

Abstract

The head-related transfer function (HRTF) defines the acoustic path from a source to the two ears of a listener in a manner that is highly dependent on direction. This directional dependence arises from the highly individual morphology of the pinna, which results in complex reflections and resonances. While this notion is generally accepted, there has been little research on the importance of different structural elements of the pinna on the HRTF. A parametric three-dimensional ear model was used to investigate the changes in shape of the pinna in a systematic manner with a view to determining important contributing morphological parameters that can be used for HRTF individualization. HRTFs were simulated using the boundary element method. The analysis comprised objective comparisons between the directional transfer function and diffuse field component. The mean spectral distortion was used for global evaluation of HRTF similarity across all simulated positions. A perceptual localization model was used to determine correspondences between perceptual cues and objective parameters. A reasonable match was found between the modelled perceptual results and the mean spectral distortion. Modifications to the shape of the concha were found to have an important impact on the HRTF, as did those in proximity to the triangular fossa. Furthermore, parameters that control the relief of the pinna were found to be at least as important as more frequently cited side-facing parameters, highlighting limitations in previous morphological/HRTF studies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cues
  • Ear Auricle*
  • Ear, External
  • Head
  • Head Movements
  • Sound Localization*