Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum

Microbiol Res. 2021 Aug:249:126773. doi: 10.1016/j.micres.2021.126773. Epub 2021 Apr 26.

Abstract

Purpureocillium lilacinum (formerly Paecilomyces lilacinus) is widely commercialized for controlling plant-parasitic nematodes and represents a potential cell factory for enzyme production. This nematicidal fungus is intrinsically resistant to common antifungal agents used for genetic transformation. Therefore, molecular investigations in P. lilacinum are still limited so far. In the present study, we have established a new Agrobacterium tumefaciens-mediated transformation (ATMT) system in P. lilacinum based on the uridine/uracil auxotrophic mechanism. Here, uridine/uracil auxotrophic mutants were simply generated via UV irradiation instead of a complicated genetic approach for the pyrG gene deletion. A stable uridine/uracil auxotrophic mutant was then selected as a recipient for fungal transformation. We further indicated that the pyrG gene from Aspergillus niger can be used as a selectable marker for genetic transformation of P. lilacinum. Under optimized conditions for ATMT, the transformation efficiency reached 2873 ± 224 transformants per 106 spores. Using the constructed ATMT system, we succeeded in expressing the DsRed reporter gene in P. lilacinum. Additionally, we have identified a very promising mutant for chitinase production from a collection of T-DNA insertion transformants. This mutant possesses a special phenotype of hyper-branching mycelium and produces more conidia in comparison to the wild strain. Conclusively, our ATMT system can be exploited for overexpression of target genes or for T-DNA insertion mutagenesis in the agriculturally important fungus P. lilacinum. The genetic approach in the present work may also be applied for developing similar ATMT systems in other fungi, especially for fungi that their genome databases are currently not available.

Keywords: Agrobacterium tumefaciens-mediated transformation; DsRed reporter gene; Purpureocillium lilacinum; T-DNA insertion mutagenesis; Uridine/uracil auxotrophic mutant; pyrG marker.

MeSH terms

  • Agrobacterium tumefaciens / genetics*
  • Antifungal Agents / pharmacology
  • Chitinases / genetics
  • Chitinases / metabolism
  • DNA, Bacterial / genetics
  • Genes, Fungal
  • Genes, Reporter
  • Hypocreales / drug effects
  • Hypocreales / genetics*
  • Hypocreales / metabolism
  • Mutagenesis, Insertional
  • Mutation
  • Transformation, Genetic*
  • Uracil / metabolism
  • Uridine / metabolism

Substances

  • Antifungal Agents
  • DNA, Bacterial
  • T-DNA
  • Uracil
  • Chitinases
  • Uridine

Supplementary concepts

  • Purpureocillium lilacinum