Electrophilic and Drug-Induced Stimulation of NOTCH3 N-terminal Fragment Oligomerization in Cerebrovascular Pathology

Transl Stroke Res. 2021 Dec;12(6):1081-1092. doi: 10.1007/s12975-021-00908-2. Epub 2021 May 3.

Abstract

Small vessel disease is a prevalent age-related condition linked to increased risk of dementia and stroke. We investigate the most commonly inherited form, CADASIL, caused by cysteine-involving mutations in NOTCH3. Recent studies highlight accumulation of NOTCH3 N-terminal fragmentation product (NTF) in disease. In vitro, NTF is capable of both spontaneous and catecholamine-enhanced cysteine-mediated oligomerization. Despite well-characterized genetic influence on CADASIL, environmental effects, including medication usage, on disease remain unclear. We studied effects of assorted electrophilic compounds and drugs on NTF oligomerization by SDS-PAGE and dynamic light scattering. We then examined direct proton pump inhibitor-NTF binding with antibodies designed against proton pump inhibitor-labeled proteins and mass spectrometry. Finally, we used monoclonal NTF antibodies with Proximity Ligation Assay to identify NTF oligomers in 3 CADASIL and 2 age-matched control brains. We identified enhancement of NTF oligomerization by two electrophilic cysteine-modifying compounds, N-ethylmaleimide and iodoacetamide, and an electrophilic compound capable of oxidizing cysteines, ferric chloride. Electrophilic clinical drugs (fenoldopam, omeprazole, tenatoprazole, lansoprazole, and rabeprazole) also promoted oligomerization, and we identified direct omeprazole-NTF and tenatoprazole-NTF complexes. Additionally, we provide novel evidence of NTF multimers in human CADASIL brains. A broad array of electrophilic chemicals, including clinically relevant drugs, influences oligomerization of a pathological CADASIL protein, providing mechanistic insight into disease protein oligomerization. We posit that environmental influences, which may include usage of electrophilic drugs, may affect CADASIL presentations.

Keywords: Cysteine; NOTCH3; Oligomerization; Proton pump inhibitors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain / metabolism
  • CADASIL*
  • Cysteine
  • Humans
  • Mutation
  • Pharmaceutical Preparations*
  • Receptor, Notch3 / genetics
  • Receptors, Notch / genetics

Substances

  • NOTCH3 protein, human
  • Pharmaceutical Preparations
  • Receptor, Notch3
  • Receptors, Notch
  • Cysteine