Screening of herbal medicines for potential allopathic antidiabetic adulterants: An analytical study

Ayu. 2019 Oct-Dec;40(4):262-272. doi: 10.4103/ayu.AYU_227_19. Epub 2021 Jan 14.

Abstract

Background: There are several reports worldwide on adulteration of herbal medicines (HMs) with allopathic drugs. In India, only a few studies have reported adulteration of HMs with antidiabetics and there are no systematic studies.

Aims: To develop a rapid and validated method for detection of allopathic antidiabetic adulterants and to explore the extent of adulteration in HMs sold in South India.

Materials and methods: Standards and solvents were purchased from Sigma-Aldrich. Different brands of antidiabetic HM samples with manufacturing licenses were procured from dispensaries. Spiked drug free psyllium husk as solid and flask seed oil as liquid herbal matrices were used for method development. The spiked matrices with different concentrations were extracted with methanol and subjected to centrifugation. The supernatant was collected and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Isocratic elution was carried on a C18 column with 0.1% (v/v) formic acid:methanol (3:7, v/v) as a mobile phase. All drugs were monitored for two ion products in positive electrospray ionization mode using multiple reaction monitoring scans.

Results: The retention time was 9 min. Limit of detection is 10 Pictograms (pg) for all analytes except for metformin, which was 370 pg. Recoveries of analytes range from 96% to 117%. Forty different brands of antidiabetic HMs were analyzed. Adulterant peaks were not observed in the mass chromatograms of HMs.

Conclusions: A single-run method was developed by LC-MS/MS for the detection of proposed antidiabetics in HMs from licensed manufacturing units and online sold HMs across herbal dispensaries in Puducherry union territory, India. None of the HMs was found to be adulterated with proposed allopathic antidiabetic adulterants.

Keywords: Adulteration; Indian traditional medicines; antidiabetic drugs; liquid chromatography-triple quadrupole detector; mass spectrometry.