An intensive and glow-type chemiluminescence of luminol-embedded, guanosine-derived hydrogel

Talanta. 2021 Aug 1:230:122351. doi: 10.1016/j.talanta.2021.122351. Epub 2021 Mar 23.

Abstract

In this paper, an intensive and glow-type chemiluminescence (CL) hydrogel was prepared by simultaneous incorporation of chemiluminescence reagent (luminol) and catalytic cofactor (hemin) into the scaffold of guanosine-derived hydrogel. The self-assembled hydrogel consisted of K+ stabilized hemin/G-quartet structures, showing significant enzyme-like activity to H2O2-mediated oxidation of luminol. After adding H2O2 into the hydrogel, blue light visible to naked eyes would come into being and last for over 8 h. The lasting-time CL emission of hydrogel was achieved due to a mechanism of slow-diffusion-controlled heterogeneous catalysis. Moreover, this self-assembled hydrogel performed a good response to H2O2 and the CL emission images could be recorded by smartphone. The hydrogel could remain excellent lifetime stability for months and the stable, enhanced and glow-type CL emission could improve the reliability and precision of CL detection, which has a promising application in cold light source and H2O2 detection of real biological samples.

Keywords: Chemiluminescence; Glow-type; Guanosine; Hydrogel; Luminol.