Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process

Biophys J. 2021 Jun 15;120(12):2532-2542. doi: 10.1016/j.bpj.2021.04.023. Epub 2021 Apr 29.

Abstract

The endoplasmic reticulum (ER) is a vital organelle in mammalian cells with a complex morphology. Consisting of sheet-like cisternae in the cell center, the peripheral ER forms a vast tubular network on which a dispersed pattern of a few hundred specialized domains (ER exit sites (ERESs)) is maintained. Molecular details of cargo sorting and vesicle formation at individual ERESs, fueling the early secretory pathway, have been studied in some detail. The emergence of spatially extended ERES patterns, however, has remained poorly understood. Here, we show that these patterns are determined by the underlying ER morphology, suggesting ERESs to emerge from a demixing process that is quenched by the ER network topology. In particular, we observed fewer but larger ERESs when transforming the ER network to more sheet-like morphologies. In contrast, little to no changes with respect to native ERES patterns were observed when fragmenting the ER, indicating that hampering the diffusion-mediated coarse graining of domains is key for native ERES patterns. Model simulations support the notion of effective diffusion barriers impeding the coarse graining and maturation of ERES patterns. We speculate that tuning a simple demixing mechanism by the ER topology allows for a robust but flexible adaption of ERES patterns, ensuring a properly working early secretory pathway in a variety of conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COP-Coated Vesicles* / metabolism
  • Diffusion
  • Endocytosis
  • Endoplasmic Reticulum* / metabolism
  • Golgi Apparatus / metabolism
  • Protein Transport