Exogenous administration of dsRNA for the demonstration of RNAi in Maruca vitrata (lepidoptera: crambidae)

3 Biotech. 2021 Apr;11(4):197. doi: 10.1007/s13205-021-02741-8. Epub 2021 Mar 27.

Abstract

The polyphagous spotted pod borer, Maruca vitrata is an important agricultural pest that causes extensive damage on various food crops. Though the pest is managed by synthetic chemicals, exploration of biotechnological approaches for its control is important. RNAi-based gene silencing is one such tool that has been extensively used for functional genomics and is highly variable in insects. In view of this, we have attempted to demonstrate RNAi in M. vitrata through exogenous double-stranded RNA (dsRNA) administration targeting seven genes associated with midgut, chemosensory, cell signalling and development. Two modes of exogenous dsRNA delivery by either haemolymph injection and/or ingestion into third and late third instar larval stages respectively exhibited efficient silencing of specific transcripts. Furthermore, dsRNA injection into the haemolymph showed significant reduction of target gene expression compared to negative controls establishing this mode of delivery to be more efficient. Interestingly, haemolymph injection required lesser dsRNA and led to higher reduction of transcript level vis-à-vis ingestion as demonstrated in dsRNA Serine Protease 33 (ds-SP33)-fed larvae. Over-expression of key RNAi component DICER and detection of siRNA authenticated the presence of RNAi in M. vitrata. Additionally, we have identified inhibitor molecules like morpholine, piperidine, carboxamide and piperidine-carboxamide through in silico analysis for blocking the function of SP33 to demonstrate the utility of functional genomics. Thus, the present study establishes the usefulness of injection and ingestion approaches for exogenous dsRNA delivery into M. vitrata larvae for effective RNAi.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-021-02741-8.

Keywords: Ingestion; Injection; Legume pod borer; RNAi; Target genes.