Detailed Inspection of γ-ray, Fast and Thermal Neutrons Shielding Competence of Calcium Oxide or Strontium Oxide Comprising Bismuth Borate Glasses

Materials (Basel). 2021 Apr 27;14(9):2265. doi: 10.3390/ma14092265.

Abstract

For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015-15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (μ/ρ) were calculated, and the attained μ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G-P) fitting approach at 1-40 mfp penetration depths (PDs), within the 0.015-15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger μ, μ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm-1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of 'Bi' (80.6813 wt%) and moderate 'B' (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of 'B' element in it.

Keywords: B2O3-Bi2O3-CaO glass; B2O3-Bi2O3-SrO glass; PENELOPE code; Phy-X/PSD software; radiation protection efficiency; γ- and neutron radiation.