Proton Bridging in Catalysis by and Inhibition of Serine Proteases of the Blood Cascade System

Life (Basel). 2021 Apr 27;11(5):396. doi: 10.3390/life11050396.

Abstract

Inquiries into the participation of short hydrogen bonds in stabilizing transition states and intermediate states in the thrombin, factor Xa, plasmin and activated protein C-catalyzed reactions revealed that specific binding of effectors at Sn, n = 1-4 and S'n, n = 1-3 and at remote exosites elicit complex patterns of hydrogen bonding and involve water networks. The methods employed that yielded these discoveries include; (1) kinetics, especially partial or full kinetic deuterium solvent isotope effects with short cognate substrates and also with the natural substrates, (2) kinetic and structural probes, particularly low-field high-resolution nuclear magnetic resonance (1H NMR), of mechanism-based inhibitors and substrate-mimic peptide inhibitors. Short hydrogen bonds form at the transition states of the catalytic reactions at the active site of the enzymes as they do with mechanism-based covalent inhibitors of thrombin. The emergence of short hydrogen bonds at the binding interface of effectors and thrombin at remote exosites has recently gained recognition. Herein, I describe our contribution, a confirmation of this discovery, by low-field 1H NMR. The principal conclusion of this review is that proton sharing at distances below the sum of van der Waals radii of the hydrogen and both donor and acceptor atoms contribute to the remarkable catalytic prowess of serine proteases of the blood clotting system and other enzymes that employ acid-base catalysis. Proton bridges also play a role in tight binding in proteins and at exosites, i.e., allosteric sites, of enzymes.

Keywords: high-resolution 1H NMR; kinetic solvent isotope effects; low-field; mechanism-based inhibitors; proton inventories; serine hydrolases; serine proteases; short hydrogen bonds (SHBs); tight-binding or allosteric inhibitors.

Publication types

  • Review