Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance

Int J Mol Sci. 2021 Apr 27;22(9):4554. doi: 10.3390/ijms22094554.

Abstract

Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.

Keywords: Canavalia rosea (Sw.) DC; abscisic acid-, stress-, and ripening-induced protein; drought; late embryogenesis abundant protein; salinity/alkaline.

MeSH terms

  • Abscisic Acid / metabolism
  • Adaptation, Physiological / genetics
  • Canavalia / genetics*
  • Canavalia / growth & development
  • Canavalia / metabolism*
  • China
  • Droughts
  • Gene Expression Regulation, Plant / genetics
  • Genome, Plant / genetics
  • Phylogeny
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Salinity
  • Salt Tolerance / genetics
  • Salt-Tolerant Plants / metabolism
  • Seeds / metabolism
  • Stress, Physiological / genetics
  • Stress, Physiological / physiology

Substances

  • Plant Proteins
  • late embryogenesis abundant protein, plant
  • Abscisic Acid