Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT)

Animals (Basel). 2021 Apr 28;11(5):1271. doi: 10.3390/ani11051271.

Abstract

Our objectives were to determine whether PLA implants can be used in TTA with successful results; secondly, to observe whether they provide a faster bone healing; finally, to determine whether weight or age influences bone healing scores. PLA cages were created with a 3D printer. TTA by MMT with PLA implants was performed in 24 patients. Follow-ups were carried out pre-surgical, at 1, 2, and 5 months and consisted of a radiographic study and a lameness assessment. A comparison was performed in terms of weight and age. Patients data, time between follow-up examinations, healing score, and lameness score were compared between patients using commercial software for statistically significant differences p < 0.05. Eighteen dogs finished the study. The ossification degrees presented statistically significant differences between each other. PLA implants maintained the advancement in 100% of cases. Comparing weight and age did not present any statistically significant differences between groups. Lameness presented statistically significant differences between follow-up examinations. Complications were observed in 20.8%. PLA implants for TTA provide good functional results, presenting an acceptable rate of complications. They provide a faster bone healing of the osteotomy gap, which was not affected by age or body weight, and have a clinical recovery time similar to metallic implants.

Keywords: 3D print; MMT; PLA; TTA; dog; modified maquet technique; polylactic acid; scaffold; tibial tuberosity advancement.