The Heterogeneity of Skewness in T2W-Based Radiomics Predicts the Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

Diagnostics (Basel). 2021 Apr 28;11(5):795. doi: 10.3390/diagnostics11050795.

Abstract

Our study aimed to investigate whether radiomics on MRI sequences can differentiate responder (R) and non-responder (NR) patients based on the tumour regression grade (TRG) assigned after surgical resection in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT). Eighty-five patients undergoing primary staging with MRI were retrospectively evaluated, and 40 patients were finally selected. The ROIs were manually outlined in the tumour site on T2w sequences in the oblique-axial plane. Based on the TRG, patients were grouped as having either a complete or a partial response (TRG = (0,1), n = 15). NR patients had a minimal or poor nCRT response (TRG = (2,3), n = 25). Eighty-four local first-order radiomic features (RFs) were extracted from tumour ROIs. Only single RFs were investigated. Each feature was selected using univariate analysis guided by a one-tailed Wilcoxon rank-sum. ROC curve analysis was performed, using AUC computation and the Youden index (YI) for sensitivity and specificity. The RF measuring the heterogeneity of local skewness of T2w values from tumour ROIs differentiated Rs and NRs with a p-value ≈ 10-5; AUC = 0.90 (95%CI, 0.73-0.96); and YI = 0.68, corresponding to 80% sensitivity and 88% specificity. In conclusion, higher heterogeneity in skewness maps of the baseline tumour correlated with a greater benefit from nCRT.

Keywords: MRI; radiomics; rectal cancer.