Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice

Int J Mol Sci. 2021 Apr 20;22(8):4277. doi: 10.3390/ijms22084277.

Abstract

High fat diet (HFD) is an important factor in the development of metabolic diseases, with liver as metabolic center being highly exposed to its influence. However, the effect of HFD-induced metabolic stress with respect to ovary hormone depletion and sirtuin 3 (Sirt3) is not clear. Here we investigated the effect of Sirt3 in liver of ovariectomized and sham female mice upon 10 weeks of feeding with standard-fat diet (SFD) or HFD. Liver was examined by Folch, gas chromatography and lipid hydroperoxide analysis, histology and oil red staining, RT-PCR, Western blot, antioxidative enzyme and oxygen consumption analyses. In SFD-fed WT mice, ovariectomy increased Sirt3 and fatty acids synthesis, maintained mitochondrial function, and decreased levels of lipid hydroperoxides. Combination of ovariectomy and Sirt3 depletion reduced pparα, Scd-1 ratio, MUFA proportions, CII-driven respiration, and increased lipid damage. HFD compromised CII-driven respiration and activated peroxisomal ROS scavenging enzyme catalase in sham mice, whereas in combination with ovariectomy and Sirt3 depletion, increased body weight gain, expression of NAFLD- and oxidative stress-inducing genes, and impaired response of antioxidative system. Overall, this study provides evidence that protection against harmful effects of HFD in female mice is attributed to the combined effect of female sex hormones and Sirt3, thus contributing to preclinical research on possible sex-related therapeutic agents for metabolic syndrome and associated diseases.

Keywords: fatty liver; high fat diet; ovariectomy; sirtuin 3.

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Body Weight
  • Cell Respiration
  • Diet, High-Fat* / adverse effects
  • Disease Models, Animal
  • Energy Metabolism*
  • Female
  • Gene Expression
  • Immunohistochemistry
  • Lipid Metabolism
  • Liver / metabolism*
  • Liver / pathology
  • Mice
  • Mice, Knockout
  • Mitochondria, Liver / metabolism
  • Non-alcoholic Fatty Liver Disease / etiology
  • Non-alcoholic Fatty Liver Disease / metabolism
  • Non-alcoholic Fatty Liver Disease / pathology
  • Ovariectomy
  • Oxidative Stress
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism
  • Sirtuin 3 / deficiency*

Substances

  • Antioxidants
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Sirt3 protein, mouse
  • Sirtuin 3