An Approach toward the Realization of a Through-Thickness Glass Fiber/Epoxy Thermoelectric Generator

Materials (Basel). 2021 Apr 23;14(9):2173. doi: 10.3390/ma14092173.

Abstract

The present study demonstrates, for the first time, the ability of a 10-ply glass fiber-reinforced polymer composite laminate to operate as a structural through-thickness thermoelectric generator. For this purpose, inorganic tellurium nanowires were mixed with single-wall carbon nanotubes in a wet chemical approach, capable of resulting in a flexible p-type thermoelectric material with a power factor value of 58.88 μW/m·K2. This material was used to prepare an aqueous thermoelectric ink, which was then deposited onto a glass fiber substrate via a simple dip-coating process. The coated glass fiber ply was laminated as top lamina with uncoated glass fiber plies underneath to manufacture a thermoelectric composite capable of generating 54.22 nW power output at a through-thickness temperature difference οf 100 K. The mechanical properties of the proposed through-thickness thermoelectric laminate were tested and compared with those of the plain laminates. A minor reduction of approximately 11.5% was displayed in both the flexural modulus and strength after the integration of the thermoelectric ply. Spectroscopic and morphological analyses were also employed to characterize the obtained thermoelectric nanomaterials and the respective coated glass fiber ply.

Keywords: glass fiber-reinforced polymer composite; multifunctional structural laminate; thermal energy harvesting; thermoelectric generator (TEG); through-thickness thermal gradient.