Mechanical and Electrical Performance of Flexible Polymer Film Designed for a Textile Electrically-Conductive Path

Materials (Basel). 2021 Apr 23;14(9):2169. doi: 10.3390/ma14092169.

Abstract

Electro-conductive paths that are mechanically resistant and stable during simulated aging cycles are promising, in relation to the non-invasive application in e-textiles in our everyday surroundings. In the paper, an analysis of the influence of electro-conductive filler, as well as ionic liquid on surface resistance is provided. Authors proved that depending on the tested variant, obtained surface resistance may vary from 50 kΩ (when 50 phr of Ag and [bmim][PF6] ionic liquid applied) to 26 GΩ (when 25 phr of Ag and [bmim][PF6] ionic liquid applied). The samples were also evaluated after simulated aging cycles and the stability of electric properties was confirmed. Moreover, it was proved that the addition of ionic liquids reduced the resistance of vulcanizates, while no significant influence of the extrusion process on conductivity was observed.

Keywords: electrically-conductive paths; polymer film; smart textiles.