Novel Polymeric Biomaterial Based on Naringenin

Materials (Basel). 2021 Apr 23;14(9):2142. doi: 10.3390/ma14092142.

Abstract

Biomaterials prepared based on raw plant materials are becoming more and more popular due to their specific properties and environmental friendliness. Naringenin is a flavonoid naturally occurring in citrus fruit with antioxidant and pharmacological activity. Polymeric materials based on flavonoids may have favorable properties in comparison to monomeric polyphenols, such as stronger antioxidant and antimicrobial properties. One of the methods of obtaining the polymeric form of flavonoids is polymerization with a cross-linking compound. This method has already been used to obtain poly(quercetin) and poly(rutin) from a flavonol group as well as poly(catechin) from the flavan-3-ol group of flavonoids. However, to date, no polymeric forms of flavanones have been prepared in a cross-linking reaction; the aim of this study was to obtain poly(naringenin) by reaction with a cross-linking compound using glycerol diglycide ether GDE. The degree of conversion of naringenin to poly(naringenin) determined by FTIR spectroscopy was 85%. In addition, the thermal, antioxidant and antimicrobial properties of poly(naringenin) were analyzed. Poly(naringenin) was characterized by greater resistance to oxidation and better thermal stability than monomeric naringenin. Moreover, polymeric naringenin also had a better ability to scavenge ABTS and DPPH free-radicals. In contrast to monomeric form, poly(naringenin) had antimicrobial activity against Candida albicans. Polymeric biomaterial based on naringenin could potentially be used as a natural stabilizer and antimicrobial additive for polymer compositions, as well as pro-ecological materials.

Keywords: cross-linking compound; naringenin; natural polyphenol; polymerization.