Comparative Analysis of Viscoelastic Properties of Open Graded Friction Course under Dynamic and Static Loads

Polymers (Basel). 2021 Apr 12;13(8):1250. doi: 10.3390/polym13081250.

Abstract

The viscoelastic properties of open graded friction course (OGFC) are closely related to anti-permanent deformation ability, noise reduction ability and durability. To study the viscoelastic parameters of OGFC under dynamic and static loads and to establish the functional relationship between them, uniaxial compression creep tests and dynamic modulus tests were performed to obtain the creep compliance and the dynamic modulus of OGFC. In addition, the Burgers model, modified Burgers model, second-order extensive Maxwell model, Scott-Blair model and modified Sigmoid model were employed to quantitatively analyze the dynamic and static viscoelastic properties of OGFC. Subsequently, the relaxation modulus of OGFC was deduced by the viscoelastic theory. Then, the dynamic modulus of OGFC was calculated according to the deduced relaxation modulus. Based on the calculated values and the measured values of dynamic modulus, the functional relationship of viscoelastic parameters of OGFC under dynamic and static loads was established. The results show that the increase in test temperature has adverse effects on the viscoelastic indexes of OGFC, such as creep compliance, relaxation modulus, and dynamic modulus; the dynamic modulus derived from static creep compliance has a good linear correlation with that obtained by dynamic modulus tests, but the correlation of the phase angle is poor.

Keywords: creep compliance; dynamic modulus; linear correlation; open graded friction course; relaxation modulus; road engineering; viscoelastic properties.