Plasmonic Biosensors for Single-Molecule Biomedical Analysis

Biosensors (Basel). 2021 Apr 15;11(4):123. doi: 10.3390/bios11040123.

Abstract

The rapid spread of epidemic diseases (i.e., coronavirus disease 2019 (COVID-19)) has contributed to focus global attention on the diagnosis of medical conditions by ultrasensitive detection methods. To overcome this challenge, increasing efforts have been driven towards the development of single-molecule analytical platforms. In this context, recent progress in plasmonic biosensing has enabled the design of novel detection strategies capable of targeting individual molecules while evaluating their binding affinity and biological interactions. This review compiles the latest advances in plasmonic technologies for monitoring clinically relevant biomarkers at the single-molecule level. Functional applications are discussed according to plasmonic sensing modes based on either nanoapertures or nanoparticle approaches. A special focus was devoted to new analytical developments involving a wide variety of analytes (e.g., proteins, living cells, nucleic acids and viruses). The utility of plasmonic-based single-molecule analysis for personalized medicine, considering technological limitations and future prospects, is also overviewed.

Keywords: biosensors; living-cells; nanoparticle; nanostructure; nucleic acids; plasmonics; single-molecule analysis; virus.

Publication types

  • Review

MeSH terms

  • Biomarkers / analysis
  • Biomarkers / metabolism
  • Biosensing Techniques / instrumentation
  • Biosensing Techniques / methods*
  • COVID-19 / diagnosis
  • COVID-19 / virology
  • Humans
  • Nanoparticles / chemistry
  • Nucleic Acids / analysis
  • SARS-CoV-2 / genetics
  • SARS-CoV-2 / isolation & purification
  • Single-Cell Analysis
  • Surface Plasmon Resonance
  • Virus Diseases / diagnosis*
  • Virus Diseases / virology

Substances

  • Biomarkers
  • Nucleic Acids