Motionless Polarizing Structured Illumination Microscopy

Sensors (Basel). 2021 Apr 17;21(8):2837. doi: 10.3390/s21082837.

Abstract

In this investigation, we propose a motionless polarizing structured illumination microscopy as an axially sectioning and reflective-type device to measure the 3D surface profiles of specimens. Based on the spatial phase-shifting technique to obtain the visibility of the illumination pattern. Instead of using a grid, a Wollaston prism is used to generate the light pattern by the stable interference of two beams. As the polarization states of two beams are orthogonal with each other, a polarization pixelated CMOS camera can simultaneously obtain four phase-shifted patterns with the beams after passing through a quarter wave plate based on the spatial phase-shifting technique with polarization. In addition, a focus tunable lens is used to eliminate a mechanical moving part for the axial scanning of the specimen. In the experimental result, a step height sample and a concave mirror were measured with 0.05 µm and 0.2 mm repeatabilities of step height and the radius of curvature, respectively.

Keywords: focus tunable lens; polarizing illumination pattern; spatial phase-shifting; structured illumination microscopy.