Pressure, flow, and density relationships in airway models during constant-flow ventilation

J Appl Physiol (1985). 1988 May;64(5):2066-73. doi: 10.1152/jappl.1988.64.5.2066.

Abstract

Adequate CO2 elimination and normal arterial PCO2 levels can be maintained in dogs during apnea by delivering a continuous flow of inspired gas at high flow rate (1-3 l.min-1.kg-1) through tubes placed in the main-stem bronchi. However, during constant-flow ventilation (CFV) the mean alveolar pressure is increased, causing increased lung volume despite low pressures in the trachea. We hypothesized that the increased dynamic alveolar pressures during CFV were due to momentum transfer from the high-velocity jet stream to resident gas in the lung. To test this, we simulated CFV in straight tubes and in a branched airway model to determine whether changes in gas flow rate (V), gas density (rho), and tube diameter (D) altered the pressure difference (delta P) between alveoli and airway opening in a manner consistent with that predicted by conservation of momentum. Momentum analysis predicts that delta P should vary with V2, whereas measurements yielded a dependence of V1.69 in branched tubes and V1.9 in straight tubes. Substitution of heliox (80% He-20% O2) for air significantly reduced lung hyperinflation during CFV. As predicted by momentum transfer, delta P varied with rho 1.0. Momentum analysis also predicts that delta P should vary with D-2.0, whereas measurements indicated a dependence on D-2.02. The influence of V and rho on depth of penetration of the jet down the airway was explored in a straight tube model by varying the flow rate and gas used. The influence of geometry on penetration was measured by changing the ratio of jet-to-airway tube diameters.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Models, Biological*
  • Pressure
  • Pulmonary Ventilation*
  • Respiration*