The Bioactive Compound Contents and Potential Protective Effects of Royal Jelly Protein Hydrolysates against DNA Oxidative Damage and LDL Oxidation

Antioxidants (Basel). 2021 Apr 9;10(4):580. doi: 10.3390/antiox10040580.

Abstract

In this study, the inhibition of DNA oxidative damage and low-density lipoprotein (LDL) oxidation of royal jelly protein (RJP) hydrolysates obtained from two commercial proteases were investigated. The results showed that the inhibition of DNA oxidative damage induced by the Fenton reaction, RJP, RJPs hydrolyzed by alcalase (RJP-A), RJPs hydrolyzed by flavourzyme (RPJ-F) and RJP two-stage hydrolysates (RPJ-AF) all had the effect of inhibiting deoxyribose oxidative damage. The inhibition effect of RJP, RJP-A, RJP-F and RJP-AF (1.0 mg/mL) were 47.06%, 33.70%, 24.19% and 43.09%, respectively. In addition, studies have also found that both RJP and RJP hydrolysates can reduce the production of 8-OH-2'-dG and the order of its inhibitory ability is RJP-AF ≒ RJP-A > RJP-F > RJP. The inhibition of DNA damage induced by bleomycin-Fe3+/ascorbic acid (Asc) with the addition of RJP, RJP-A, RPJ-F and RPJ-AF were 17.16%, 30.88%, 25.00% and 37.25%, respectively. The results of LDL oxidation inhibition showed that RJP-AF (1 mg/mL) not only had the most effective inhibitory Cu2+-induced LDL oxidation to produce a thiobarbituric acid reactive substance (TBARS) but also extended the lag time of conjugated diene formation to 300 min, which was 3.3 times that of the control group.

Keywords: DNA oxidative damage; Fenton reaction; LDL oxidation; conjugated diene; protein hydrolysate; royal jelly.