Increased Crystallization of CuTCNQ in Water/DMSO Bisolvent for Enhanced Redox Catalysis

Nanomaterials (Basel). 2021 Apr 8;11(4):954. doi: 10.3390/nano11040954.

Abstract

Controlling the kinetics of CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) crystallization has been a major challenge, as CuTCNQ crystallizing on Cu foil during synthesis in conventional solvents such as acetonitrile simultaneously dissolves into the reaction medium. In this work, we address this challenge by using water as a universal co-solvent to control the kinetics of crystallization and growth of phase I CuTCNQ. Water increases the dielectric constant of the reaction medium, shifting the equilibrium toward CuTCNQ crystallization while concomitantly decreasing the dissolution of CuTCNQ. This allows more CuTCNQ to be controllably crystallized on the surface of the Cu foil. Different sizes of CuTCNQ crystals formed on Cu foil under different water/DMSO admixtures influence the solvophilicity of these materials. This has important implications in their catalytic performance, as water-induced changes in the surface properties of these materials can make them highly hydrophilic, which allows the CuTCNQ to act as an efficient catalyst as it brings the aqueous reactants in close vicinity of the catalyst. Evidently, the CuTCNQ synthesized in 30% (v/v) water/DMSO showed superior catalytic activity for ferricyanide reduction with 95% completion achieved within a few minutes in contrast to CuTCNQ synthesized in DMSO that took over 92 min.

Keywords: CuTCNQ; charge-transfer complex; co-solvent; metal–organic semiconductor; redox catalysis.