Fabrication of Graphene Based Durable Intelligent Personal Protective Clothing for Conventional and Non-Conventional Chemical Threats

Nanomaterials (Basel). 2021 Apr 7;11(4):940. doi: 10.3390/nano11040940.

Abstract

Conventional or non-conventional chemical threat is gaining huge attention due to its unpredictable and mass destructive effects. Typical military protective suits have drawbacks such as high weight, bulky structure, and unpredictable lifetime. A durable, light, and scalable graphene e-fabric was fabricated from CVD-grown graphene by a simple co-lamination method. The sheet resistance was below 1 kΩ/sq over the wide surface area even after 1000 bending cycles. A graphene triboelectric nanogenerator showed the peak VOC of 68 V and the peak ICC of 14.4 μA and 1 μF capacitor was charged successfully in less than 1 s. A wearable chemical sensor was also fabricated and showed a sensitivity up to 53% for nerve chemical warfare agents (GD). DFT calculations were conducted to unveil the fundamental mechanisms underlying the graphene e-fabric sensor. Additionally, protection against chemical warfare agents was tested, and a design concept of graphene-based intelligent protective clothing has been proposed.

Keywords: DFT calculation; chemical sensor; e-fabric; graphene; graphene transfer; non-conventional threats; triboelectric nanogenerator.