Potential Application of Cornelian Cherry Extract on Broiler Chickens: Growth, Expression of Antioxidant Biomarker and Glucose Transport Genes, and Oxidative Stability of Frozen Meat

Animals (Basel). 2021 Apr 7;11(4):1038. doi: 10.3390/ani11041038.

Abstract

The use of natural plant extracts in poultry feed could improve their productivity as well as the oxidative stability of stored derived meat. The roles of cornelian cherry extract (CCE) in growth, cecal microbes, and meat antioxidative markers of broiler chickens were evaluated. A total of 500 Ross 308 broiler chicks were fed diets supplemented with CCE (0, 50, 100, 200, 400 mg/kg of diet) for 38 days. The highest levels of weight gain and feed utilization were observed in a group fed 200 mg/kg of CCE. Maximum upregulation of glucose transporters-1 and 2 and sodium-dependent glucose transporter genes-were found in the group fed 200 mg/kg of CCE. Lactobacilli and Bifidobacterium colonization increased as the CCE levels increased. The greatest upregulation of antioxidant genes (glutathione peroxidase, catalase, and superoxide dismutase) in breast meat was observed in groups fed CCE (200 and 400 mg/kg). Dietary CCE significantly delayed the lipid oxidation of breast meat compared with that of the control group. The total phenolic content, 2,2-Diphenyl-1-Picrihydrzyl (DPPH) radical scavenging activity and reducing power in meat improved with higher levels of CCE. Dietary CCE improved the growth, performance of broilers, and meat antioxidant stability after 90 days of storage.

Keywords: chicken; cornelian cherry extract; gene expression; glucose transporter; oxidative biomarker.