Pulse Root Ideotype for Water Stress in Temperate Cropping System

Plants (Basel). 2021 Apr 3;10(4):692. doi: 10.3390/plants10040692.

Abstract

Pulses are a key component of crop production systems in Southern Australia due to their rotational benefits and potential profit margins. However, cultivation in temperate cropping systems such as that of Southern Australia is limited by low soil water availability and subsoil constraints. This limitation of soil water is compounded by the irregular rainfall, resulting in the absence of plant available water at depth. An increase in the productivity of key pulses and expansion into environments and soil types traditionally considered marginal for their growth will require improved use of the limited soil water and adaptation to sub soil constrains. Roots serve as the interface between soil constraints and the whole plant. Changes in root system architecture (RSA) can be utilised as an adaptive strategy in achieving yield potential under limited rainfall, heterogenous distribution of resources and other soil-based constraints. The existing literature has identified a "'Steep, Deep and Cheap" root ideotype as a preferred RSA. However, this idiotype is not efficient in a temperate system where plant available water is limited at depth. In addition, this root ideotype and other root architectural studies have focused on cereal crops, which have different structures and growth patterns to pulses due to their monocotyledonous nature and determinant growth habit. The paucity of pulse-specific root architectural studies warrants further investigations into pulse RSA, which should be combined with an examination of the existing variability of known genetic traits so as to develop strategies to alleviate production constraints through either tolerance or avoidance mechanisms. This review proposes a new model of root system architecture of "Wide, Shallow and Fine" roots based on pulse roots in temperate cropping systems. The proposed ideotype has, in addition to other root traits, a root density concentrated in the upper soil layers to capture in-season rainfall before it is lost due to evaporation. The review highlights the potential to achieve this in key pulse crops including chickpea, lentil, faba bean, field pea and lupin. Where possible, comparisons to determinate crops such as cereals have also been made. The review identifies the key root traits that have shown a degree of adaptation via tolerance or avoidance to water stress and documents the current known variability that exists in and amongst pulse crops setting priorities for future research.

Keywords: avoidance; constraints; dicotyledon; dryland cropping; indeterminacy; legumes; morphology; phenology; tolerance.

Publication types

  • Review