Microstructure, Hot Deformation Behavior, and Recrystallization Behavior of Zn-1Fe-1Mg Alloy under Isothermal Compression

Materials (Basel). 2021 Apr 1;14(7):1735. doi: 10.3390/ma14071735.

Abstract

Nowadays, wrought zinc-based biodegradable alloys are favored by researchers, due to their excellent mechanical properties and suitable degradation rates. However, there are few research studies on their thermal deformation behavior at present. This study took Zn-1Fe-1Mg and explored its microstructural change, deformation, recrystallization behavior and processing map by means of the thermal simulation experiment, at temperatures ranging from 235 °C to 340 °C and strain rates ranging from 10-2 s-1 to 10 s-1. The constitutive model was constructed using the Arrhenius formula. The results indicated that the evolution of microstructure included the dynamic recrystallization (DRX) of the Zn matrix, the spheroidization of the Mg2Zn11 phase, and breaking of the FeZn13 phase. The subgrains observed within the deformed grain resulted mainly from continuous dynamic recrystallization (CDRX). The precipitated FeZn13 grains overlapped with the precipitated MgZn2 from the matrix, thus forming a spine-like structure at the phase interface. After compression, the alloy possessed a strong basal texture. Affected by the change of Zn twins, textural strength decreased at first and then increased as the deformation temperature rose. There was only a small unstable region in the processing map, indicating that the alloy exhibited good machinability.

Keywords: biodegradable Zn-Fe-Mg; constitutive equation; dynamic recrystallization; microstructure evolution; twinning.