Study of Obstacle-Crossing and Pitch Control Characteristic of a Novel Jumping Robot

Sensors (Basel). 2021 Apr 1;21(7):2432. doi: 10.3390/s21072432.

Abstract

In this study, we demonstrated a novel jumping robot that has the ability of accurate obstacle-crossing jumping and aerial pitch control. The novel robot can quickly leap high into the air with a powerful water jet thruster. The robot was designed to overcome multiple general obstacles via accurate jumping. Then a modified whale optimization algorithm (MWOA) was proposed to determine an optimized jumping trajectory according to the form of obstacles. By comparing with classical intelligent optimization algorithms, the MWOA revealed superiority in convergence rate and precision. Besides, the dynamics model of aerial pitch control was built and its effect was verified by the pitch control experiment. Lastly, the robot's obstacle-crossing experiments were performed and the results validated the robot's good ability of obstacle-crossing and aerial body righting. We believe the optimization of trajectory and the pitch control are of great help for the jumping robot's complex jumping and obstacle-crossing performance.

Keywords: intelligent optimization algorithm; jumping robot; pitch control.