Long-Chain Fatty Acids in Bones and Their Link to Submicroscopic Vascularization Network: NMR Assignment and Relaxation Studies under Magic Angle Spinning Conditions in Intramuscular Bones of Atlantic Herring Fish

J Phys Chem B. 2021 May 13;125(18):4585-4595. doi: 10.1021/acs.jpcb.1c00186. Epub 2021 Apr 29.

Abstract

The long-lasting proton signals in bones are identified as long-chain fatty acids, including saturated, mono-, and di-unsaturated fatty acids, with direct nuclear magnetic resonance evidence. We used intramuscular bones from Atlantic Herring fish to avoid interference from lipid-rich marrows. The key is to recognize that these signals are from mobile phase materials and study them with J-coupled correlation spectroscopies under magic angle spinning conditions. We kept extensive 1H-spin-echo records that allowed us to examine the effect of magic angle spinning on the transverse relaxation time of water and lipids over time. While it is impossible to distinguish based on chemical shifts, the relaxation data suggest that the signals are more consistent with the interpretation of phospholipid membranes than triglycerides in lipid droplets. In particular, the simultaneous T2 changes in water and lipids suggest that the centrifugal impact of magic angle spinning alters the lipid's structure in very tight spaces. Additional evidence of phospholipid membranes came from the choline-γ resonance at 3.2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors: (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fatty Acids
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy
  • Phospholipids*

Substances

  • Fatty Acids
  • Phospholipids