Crystal Structure and Predominant Defects in CdS Quantum Dots Fabricated by the Langmuir-Blodgett Method

Langmuir. 2021 May 11;37(18):5651-5658. doi: 10.1021/acs.langmuir.1c00526. Epub 2021 Apr 29.

Abstract

The crystal structure and shape of the CdS quantum dots (QDs) obtained by the Langmuir-Blodgett method were studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy (EXAFS), and ultraviolet spectroscopy. X-ray photoelectron spectroscopy (XPS) and stationary photoluminescence spectroscopy (PL) methods were used to determine the dominant surface defects. Initially synthesized QDs within the Langmuir-Blodgett film of fatty behenic acid have a cubic structure and oblate spheroid shape, while free-standing QDs obtained after the matrix evaporation have a wurtzite structure and sphere-like shape. QDs within the matrix demonstrate a wide PL band centered at 2.3 eV corresponding to defect-assisted radiative recombination; after the matrix annealing and passivation of the QD surface in an ammonia atmosphere, the PL spectrum demonstrates a high-intensity band-edge peak together with a low-intensity defect-assisted shoulder. It was established that sulfur (VS) vacancies are the dominating defects. A model of simultaneous band-edge and defect-assisted recombination through the VS level was proposed.