Redox-Neutral S-nitrosation Mediated by a Dicopper Center

Angew Chem Int Ed Engl. 2021 Jul 12;60(29):15980-15987. doi: 10.1002/anie.202102589. Epub 2021 Jun 16.

Abstract

A redox-neutral S-nitrosation of thiol has been achieved at a dicopper(I,I) center. Treatment of dicopper (I,I) complex with excess NO. and thiol generates a dicopper (I,I) di-S-nitrosothiol complex [CuI CuI (RSNO)2 ]2+ or dicopper (I,I) mono-S-nitrosothiol complex [CuI CuI (RSNO)]2+ , which readily release RSNO in 88-94 % yield. The S-nitrosation proceeds by a mixed-valence [CuII CuIII (μ-O)(μ-NO)]2+ species, which deprotonates RS-H at the basic μ-O site and nitrosates RS- at the μ-NO site. The [CuII CuIII (μ-O)(μ-NO)]2+ complex is also competent for O-nitrosation of MeOH. A rare [CuII CuII (μ-NO)(OMe)]2+ intermediate was isolated and fully characterized, suggesting the S-nitrosation may proceed through the intermediary of analogous [CuII CuII (μ-NO)(SR)]2+ species. This redox- and proton-neutral S-nitrosation process is the first functional model of ceruloplasmin in mediating S-nitrosation of external thiols, with implications for biological copper sites in the interconversion of NO. /RSNO.

Keywords: O-nitrosation; S-nitrosation; bimetallic compexes; copper; nitric oxide.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.