Establishment and evaluation of a rat model of extracorporeal membrane oxygenation (ECMO) thrombosis using a 3D-printed mock-oxygenator

J Transl Med. 2021 Apr 28;19(1):179. doi: 10.1186/s12967-021-02847-w.

Abstract

Background: Extracorporeal membrane oxygenation (ECMO) research using large animals requires a significant amount of resources, slowing down the development of new means of ECMO anticoagulation. Therefore, this study developed and evaluated a new rat ECMO model using a 3D-printed mock-oxygenator.

Methods: The circuit consisted of tubing, a 3D-printed mock-oxygenator, and a roller pump. The mock-oxygenator was designed to simulate the geometry and blood flow patterns of the fiber bundle in full-scale oxygenators but with a low (2.5 mL) priming volume. Rats were placed on arteriovenous ECMO at a 1.9 mL/min flow rate at two different heparin doses (n = 3 each): low (15 IU/kg/h for eight hours) versus high (50 IU/kg/h for one hour followed by 25 IU/kg/h for seven hours). The experiment continued for eight hours or until the mock-oxygenator failed. The mock-oxygenator was considered to have failed when its blood flow resistance reached three times its baseline resistance.

Results: During ECMO, rats maintained near-normal mean arterial pressure and arterial blood gases with minimal hemodilution. The mock-oxygenator thrombus weight was significantly different (p < 0.05) between the low (0.02 ± 0.006 g) and high (0.003 ± 0.001 g) heparin delivery groups, and blood flow resistance was also larger in the low anticoagulation group.

Conclusions: This model is a simple, inexpensive system for investigating new anticoagulation agents for ECMO and provides low and high levels of anticoagulation that can serve as control groups for future studies.

Keywords: Anticoagulants; Extracorporeal membrane oxygenation; Heparin; Rats; Three-dimensional printing; Thrombosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracorporeal Membrane Oxygenation*
  • Heparin / pharmacology
  • Oxygenators
  • Printing, Three-Dimensional
  • Rats
  • Thrombosis*

Substances

  • Heparin