Superatomic solid solutions

Nat Chem. 2021 Jun;13(6):607-613. doi: 10.1038/s41557-021-00680-8. Epub 2021 Apr 26.

Abstract

In atomic solids, substitutional doping of atoms into the lattice of a material to form solid solutions is one of the most powerful approaches to modulating its properties and has led to the discovery of various metal alloys and semiconductors. Herein we have prepared solid solutions in hierarchical solids that are built from atomically precise clusters. Two geometrically similar metal chalcogenide clusters, Co6Se8(PEt3)6 and Cr6Te8(PEt3)6, were combined as random substitutional mixture, in three different ratios, in a crystal lattice together with fullerenes. This does not alter the underlying crystalline structure of the [cluster][C60]2 material, but it influences its electronic and magnetic properties. All three solid solutions showed increased electrical conductivities compared with either the Co- or Cr-based parent material, substantially so for two of the Co:Cr ratios (up to 100-fold), and lowered activation barriers for electron transport. We attribute this to the existence of additional energy states arising from the materials' structural heterogeneity, which effectively narrow transport gaps.