Algae-based antioxidant containing selenium yeast (Economase®) enhanced the growth performance, oxidative stability, and meat quality of broiler chickens

Anim Biosci. 2022 Apr;35(4):567-576. doi: 10.5713/ab.20.0822. Epub 2021 Apr 23.

Abstract

Objective: An experiment was conducted to determine the effect of algae-based antioxidant containing Se yeast (EconomasE®) on the growth performance, visceral organ weight, meat quality, and oxidative stability of broiler chickens.

Methods: Nine hundred sixty, day-old male broiler chickens (Cobb, 43.97±0.55 g) were divided into three dietary treatments and allocated into 12 deep litter pens in a completely randomized design giving 4 replicate cages for each treatment. Three dietary treatments were: i) control (CON, basal diet with sufficient nutrient), ii) vitamin E (VitE, basal diet supplemented with 100 IU VitE), and iii) Algae-based antioxidant containing Se yeast (EcoE, basal diet supplemented with 0.2% algae-based antioxidant containing Se yeast: EconomasE®). Maize soybean meal based basal diets were formulated to meet or exceed the nutrition requirement for broiler chickens. Chickens were fed ad-libitum experimental diets during the 42 days experiment period. On days 21 and 42, body weight and feed intake were measured to calculate the feed conversion ratio of the chickens. Intestine and visceral organs were measured together with meat quality and oxidative stability on days 14 and 42.

Results: Chickens fed with EcoE showed improved (p<0.05) growth performance, meat quality, and higher (p<0.05) oxidative stability compared to the chicken fed on CON. Moreover, broiler chickens fed with EcoE showed similar (p<0.05) growth performance with better (p<0.05) meat quality and higher oxidative stability compared to the broiler chickens fed VitE (p<0.05).

Conclusion: The algae-based antioxidant containing Se yeast can be supplemented into commercial broiler diets as a substitution of VitE while maintaining growth performance with enhancing meat quality and oxidative stability of the broiler chickens.

Keywords: Algae-based Antioxidant; Broiler; Growth Performance; Meat Quality; Oxidative Stability; Selenium Yeast.